Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.

Identifieur interne : 004513 ( Main/Exploration ); précédent : 004512; suivant : 004514

Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.

Auteurs : Z. Gu ; E J Rogers ; P S Lovett

Source :

RBID : pubmed:7690023

Descripteurs français

English descriptors

Abstract

The site of ribosome stalling in the leader of cat transcripts is critical to induction of downstream translation. Site-specific stalling requires translation of the first five leader codons and the presence of chloramphenicol, a sequence-independent inhibitor of ribosome elongation. We demonstrate in this report that a synthetic peptide (the 5-mer) corresponding to the N-terminal five codons of the cat-86 leader inhibits peptidyl transferase in vitro. The N-terminal 2-, 3-, and 4-mers and the reverse 5-mer (reverse amino acid sequence of the 5-mer) are virtually without effect on peptidyl transferase. A missense mutation in the cat-86 leader that abolishes induction in vivo corresponds to an amino acid replacement in the 5-mer that completely relieves peptidyl transferase inhibition. In contrast, a missense mutation that does not interfere with in vivo induction corresponds to an amino acid replacement in the 5-mer that does not significantly alter peptidyl transferase inhibition. Our results suggest that peptidyl transferase inhibition by the nascent cat-86 5-mer peptide may be the primary determinant of the site of ribosome stalling in the leader. A model based on this concept can explain the site specificity of ribosome stalling as well as the response of induction to very low levels of the antibiotic inducer.

DOI: 10.1128/jb.175.17.5309-5313.1993
PubMed: 7690023


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.</title>
<author>
<name sortKey="Gu, Z" sort="Gu, Z" uniqKey="Gu Z" first="Z" last="Gu">Z. Gu</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Maryland Baltimore County, Catonsville 21228.</nlm:affiliation>
<wicri:noCountry code="subField">Catonsville 21228</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Rogers, E J" sort="Rogers, E J" uniqKey="Rogers E" first="E J" last="Rogers">E J Rogers</name>
</author>
<author>
<name sortKey="Lovett, P S" sort="Lovett, P S" uniqKey="Lovett P" first="P S" last="Lovett">P S Lovett</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:7690023</idno>
<idno type="pmid">7690023</idno>
<idno type="doi">10.1128/jb.175.17.5309-5313.1993</idno>
<idno type="wicri:Area/PubMed/Corpus">002912</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002912</idno>
<idno type="wicri:Area/PubMed/Curation">002912</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002912</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002770</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002770</idno>
<idno type="wicri:Area/Ncbi/Merge">002916</idno>
<idno type="wicri:Area/Ncbi/Curation">002916</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002916</idno>
<idno type="wicri:doubleKey">0021-9193:1993:Gu Z:peptidyl:transferase:inhibition</idno>
<idno type="wicri:Area/Main/Merge">004577</idno>
<idno type="wicri:Area/Main/Curation">004513</idno>
<idno type="wicri:Area/Main/Exploration">004513</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.</title>
<author>
<name sortKey="Gu, Z" sort="Gu, Z" uniqKey="Gu Z" first="Z" last="Gu">Z. Gu</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Maryland Baltimore County, Catonsville 21228.</nlm:affiliation>
<wicri:noCountry code="subField">Catonsville 21228</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Rogers, E J" sort="Rogers, E J" uniqKey="Rogers E" first="E J" last="Rogers">E J Rogers</name>
</author>
<author>
<name sortKey="Lovett, P S" sort="Lovett, P S" uniqKey="Lovett P" first="P S" last="Lovett">P S Lovett</name>
</author>
</analytic>
<series>
<title level="j">Journal of bacteriology</title>
<idno type="ISSN">0021-9193</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Bacillus subtilis (enzymology)</term>
<term>Bacillus subtilis (genetics)</term>
<term>Base Sequence</term>
<term>Chloramphenicol (pharmacology)</term>
<term>Chloramphenicol O-Acetyltransferase (genetics)</term>
<term>Chloramphenicol O-Acetyltransferase (metabolism)</term>
<term>Drug Resistance, Microbial (genetics)</term>
<term>Enzyme Induction</term>
<term>Erythromycin (pharmacology)</term>
<term>Kinetics</term>
<term>Lincomycin (pharmacology)</term>
<term>Molecular Sequence Data</term>
<term>Peptidyl Transferases (antagonists & inhibitors)</term>
<term>Peptidyl Transferases (drug effects)</term>
<term>Protein Sorting Signals (genetics)</term>
<term>Protein Sorting Signals (metabolism)</term>
<term>RNA, Bacterial</term>
<term>Ribosomes (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN bactérien</term>
<term>Bacillus subtilis (enzymologie)</term>
<term>Bacillus subtilis (génétique)</term>
<term>Chloramphenicol O-acetyltransferase (génétique)</term>
<term>Chloramphenicol O-acetyltransferase (métabolisme)</term>
<term>Chloramphénicol (pharmacologie)</term>
<term>Cinétique</term>
<term>Données de séquences moléculaires</term>
<term>Induction enzymatique</term>
<term>Lincomycine (pharmacologie)</term>
<term>Peptidyl transferases ()</term>
<term>Peptidyl transferases (antagonistes et inhibiteurs)</term>
<term>Ribosomes (métabolisme)</term>
<term>Résistance microbienne aux médicaments (génétique)</term>
<term>Signaux de triage des protéines (génétique)</term>
<term>Signaux de triage des protéines (métabolisme)</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Érythromycine (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Peptidyl Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Peptidyl Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chloramphenicol O-Acetyltransferase</term>
<term>Protein Sorting Signals</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chloramphenicol O-Acetyltransferase</term>
<term>Protein Sorting Signals</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chloramphenicol</term>
<term>Erythromycin</term>
<term>Lincomycin</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Peptidyl transferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacillus subtilis</term>
<term>Drug Resistance, Microbial</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bacillus subtilis</term>
<term>Chloramphenicol O-acetyltransferase</term>
<term>Résistance microbienne aux médicaments</term>
<term>Signaux de triage des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chloramphenicol O-acetyltransferase</term>
<term>Ribosomes</term>
<term>Signaux de triage des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chloramphénicol</term>
<term>Lincomycine</term>
<term>Érythromycine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Enzyme Induction</term>
<term>Kinetics</term>
<term>Molecular Sequence Data</term>
<term>RNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN bactérien</term>
<term>Cinétique</term>
<term>Données de séquences moléculaires</term>
<term>Induction enzymatique</term>
<term>Peptidyl transferases</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The site of ribosome stalling in the leader of cat transcripts is critical to induction of downstream translation. Site-specific stalling requires translation of the first five leader codons and the presence of chloramphenicol, a sequence-independent inhibitor of ribosome elongation. We demonstrate in this report that a synthetic peptide (the 5-mer) corresponding to the N-terminal five codons of the cat-86 leader inhibits peptidyl transferase in vitro. The N-terminal 2-, 3-, and 4-mers and the reverse 5-mer (reverse amino acid sequence of the 5-mer) are virtually without effect on peptidyl transferase. A missense mutation in the cat-86 leader that abolishes induction in vivo corresponds to an amino acid replacement in the 5-mer that completely relieves peptidyl transferase inhibition. In contrast, a missense mutation that does not interfere with in vivo induction corresponds to an amino acid replacement in the 5-mer that does not significantly alter peptidyl transferase inhibition. Our results suggest that peptidyl transferase inhibition by the nascent cat-86 5-mer peptide may be the primary determinant of the site of ribosome stalling in the leader. A model based on this concept can explain the site specificity of ribosome stalling as well as the response of induction to very low levels of the antibiotic inducer.</div>
</front>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Gu, Z" sort="Gu, Z" uniqKey="Gu Z" first="Z" last="Gu">Z. Gu</name>
<name sortKey="Lovett, P S" sort="Lovett, P S" uniqKey="Lovett P" first="P S" last="Lovett">P S Lovett</name>
<name sortKey="Rogers, E J" sort="Rogers, E J" uniqKey="Rogers E" first="E J" last="Rogers">E J Rogers</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004513 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004513 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:7690023
   |texte=   Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:7690023" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021